login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041715 Denominators of continued fraction convergents to sqrt(377). 2
1, 2, 5, 12, 461, 934, 2329, 5592, 214825, 435242, 1085309, 2605860, 100107989, 202821838, 505751665, 1214325168, 46650108049, 94514541266, 235679190581, 565872922428, 21738850242845, 44043573408118, 109825997059081, 263695567526280, 10130257563057721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0,0,0,466,0,0,0,-1).

FORMULA

G.f.: -(x^2-2*x-1)*(x^4+6*x^2+1) / (x^8-466*x^4+1). - Colin Barker, Nov 22 2013

a(n) = 466*a(n-4) - a(n-8) for n>7. - Vincenzo Librandi, Dec 23 2013

MATHEMATICA

Denominator[Convergents[Sqrt[377], 30]] (* Vincenzo Librandi, Dec 23 2013 *)

LinearRecurrence[{0, 0, 0, 466, 0, 0, 0, -1}, {1, 2, 5, 12, 461, 934, 2329, 5592}, 40] (* Harvey P. Dale, Jul 24 2019 *)

PROG

(Magma) I:=[1, 2, 5, 12, 461, 934, 2329, 5592]; [n le 8 select I[n] else 466*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013

CROSSREFS

Cf. A041714, A040357.

Sequence in context: A041095 A041333 A197950 * A042241 A042911 A137918

Adjacent sequences: A041712 A041713 A041714 * A041716 A041717 A041718

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Colin Barker, Nov 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 19:36 EST 2022. Contains 358703 sequences. (Running on oeis4.)