login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041715
Denominators of continued fraction convergents to sqrt(377).
2
1, 2, 5, 12, 461, 934, 2329, 5592, 214825, 435242, 1085309, 2605860, 100107989, 202821838, 505751665, 1214325168, 46650108049, 94514541266, 235679190581, 565872922428, 21738850242845, 44043573408118, 109825997059081, 263695567526280, 10130257563057721
OFFSET
0,2
FORMULA
G.f.: -(x^2-2*x-1)*(x^4+6*x^2+1) / (x^8-466*x^4+1). - Colin Barker, Nov 22 2013
a(n) = 466*a(n-4) - a(n-8) for n>7. - Vincenzo Librandi, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[377], 30]] (* Vincenzo Librandi, Dec 23 2013 *)
LinearRecurrence[{0, 0, 0, 466, 0, 0, 0, -1}, {1, 2, 5, 12, 461, 934, 2329, 5592}, 40] (* Harvey P. Dale, Jul 24 2019 *)
PROG
(Magma) I:=[1, 2, 5, 12, 461, 934, 2329, 5592]; [n le 8 select I[n] else 466*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013
CROSSREFS
Sequence in context: A041095 A041333 A197950 * A042241 A042911 A137918
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 22 2013
STATUS
approved