login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041333
Denominators of continued fraction convergents to sqrt(180).
2
1, 2, 5, 12, 317, 646, 1609, 3864, 102073, 208010, 518093, 1244196, 32867189, 66978574, 166824337, 400627248, 10583132785, 21566892818, 53716918421, 129000729660, 3407735889581, 6944472508822, 17296680907225, 41537834323272, 1097280373312297
OFFSET
0,2
FORMULA
G.f.: -(x^2-2*x-1)*(x^4+6*x^2+1) / ((x^2-4*x-1)*(x^2+4*x-1)*(x^4+18*x^2+1)). - Colin Barker, Nov 15 2013
a(n) = 322*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 15 2013
MATHEMATICA
Denominator[Convergents[Sqrt[180], 30]] (* Vincenzo Librandi, Dec 15 2013 *)
LinearRecurrence[{0, 0, 0, 322, 0, 0, 0, -1}, {1, 2, 5, 12, 317, 646, 1609, 3864}, 30] (* Harvey P. Dale, May 07 2016 *)
PROG
(Magma) I:=[1, 2, 5, 12, 317, 646, 1609, 3864]; [n le 8 select I[n] else 322*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
CROSSREFS
Sequence in context: A205082 A060807 A041095 * A197950 A041715 A042241
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 15 2013
STATUS
approved