Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:44:54
%S 18,19,170,359,3042,3401,125478,128879,1156510,2441899,20691702,
%T 23133601,853501338,876634939,7866580850,16609796639,140744953962,
%U 157354750601,5805515975598,5962870726199,53508481785190,112979834296579,957347156157822
%N Numerators of continued fraction convergents to sqrt(357).
%H Vincenzo Librandi, <a href="/A041676/b041676.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 6802, 0, 0, 0, 0, 0, -1).
%F G.f.: -(x^11-18*x^10+19*x^9-170*x^8+359*x^7-3042*x^6-3401*x^5-3042*x^4-359*x^3-170*x^2-19*x-18)/(x^12-6802*x^6+1). - _Vincenzo Librandi_, Nov 06 2013
%F a(n) = 6802*a(n-6) - a(n-12). - _Vincenzo Librandi_, Nov 06 2013
%t Numerator[Convergents[Sqrt[357], 30]] (* _Harvey P. Dale_, Mar 06 2012 *)
%t CoefficientList[Series[-(x^11 - 18 x^10 + 19 x^9 - 170 x^8 + 359 x^7 - 3042 x^6 - 3401 x^5 - 3042 x^4 - 359 x^3 - 170 x^2 - 19 x - 18)/(x^12 - 6802 x^6 + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Nov 06 2013 *)
%t LinearRecurrence[{0, 0, 0, 0, 0, 6802, 0, 0, 0, 0, 0, -1}, {18, 19, 170, 359, 3042, 3401, 125478, 128879, 1156510, 2441899, 20691702, 23133601}, 30] (* _Bruno Berselli_, Nov 06 2013 *)
%o (Magma) I:=[18,19,170,359,3042,3401,125478,128879,1156510, 2441899,20691702,23133601]; [n le 12 select I[n] else 6802*Self(n-6)-Self(n-12): n in [1..25]]; // _Vincenzo Librandi_, Nov 06 2013
%Y Cf. A041677.
%K nonn,cofr,frac,easy
%O 0,1
%A _N. J. A. Sloane_.