login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041676
Numerators of continued fraction convergents to sqrt(357).
2
18, 19, 170, 359, 3042, 3401, 125478, 128879, 1156510, 2441899, 20691702, 23133601, 853501338, 876634939, 7866580850, 16609796639, 140744953962, 157354750601, 5805515975598, 5962870726199, 53508481785190, 112979834296579, 957347156157822
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 6802, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^11-18*x^10+19*x^9-170*x^8+359*x^7-3042*x^6-3401*x^5-3042*x^4-359*x^3-170*x^2-19*x-18)/(x^12-6802*x^6+1). - Vincenzo Librandi, Nov 06 2013
a(n) = 6802*a(n-6) - a(n-12). - Vincenzo Librandi, Nov 06 2013
MATHEMATICA
Numerator[Convergents[Sqrt[357], 30]] (* Harvey P. Dale, Mar 06 2012 *)
CoefficientList[Series[-(x^11 - 18 x^10 + 19 x^9 - 170 x^8 + 359 x^7 - 3042 x^6 - 3401 x^5 - 3042 x^4 - 359 x^3 - 170 x^2 - 19 x - 18)/(x^12 - 6802 x^6 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 06 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 6802, 0, 0, 0, 0, 0, -1}, {18, 19, 170, 359, 3042, 3401, 125478, 128879, 1156510, 2441899, 20691702, 23133601}, 30] (* Bruno Berselli, Nov 06 2013 *)
PROG
(Magma) I:=[18, 19, 170, 359, 3042, 3401, 125478, 128879, 1156510, 2441899, 20691702, 23133601]; [n le 12 select I[n] else 6802*Self(n-6)-Self(n-12): n in [1..25]]; // Vincenzo Librandi, Nov 06 2013
CROSSREFS
Cf. A041677.
Sequence in context: A041670 A041672 A041674 * A370152 A041678 A197352
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved