login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041559
Denominators of continued fraction convergents to sqrt(297).
2
1, 4, 13, 17, 30, 77, 107, 184, 659, 2820, 96539, 388976, 1263467, 1652443, 2915910, 7484263, 10400173, 17884436, 64053481, 274098360, 9383397721, 37807689244, 122806465453, 160614154697, 283420620150, 727455394997, 1010876015147, 1738331410144
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,97198,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^18 -4*x^17 +13*x^16 -17*x^15 +30*x^14 -77*x^13 +107*x^12 -184*x^11 +659*x^10 -2820*x^9 -659*x^8 -184*x^7 -107*x^6 -77*x^5 -30*x^4 -17*x^3 -13*x^2 -4*x -1) / (x^20 -97198*x^10 +1). - Colin Barker, Nov 19 2013
a(n) = 97198*a(n-10) - a(n-20) for n>19. - Vincenzo Librandi, Dec 20 2013
MATHEMATICA
Denominator[Convergents[Sqrt[297], 30]] (* Vincenzo Librandi, Dec 20 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 97198, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 4, 13, 17, 30, 77, 107, 184, 659, 2820, 96539, 388976, 1263467, 1652443, 2915910, 7484263, 10400173, 17884436, 64053481, 274098360}, 30] (* Harvey P. Dale, Sep 26 2023 *)
PROG
(Magma) I:=[1, 4, 13, 17, 30, 77, 107, 184, 659, 2820, 96539, 388976, 1263467, 1652443, 2915910, 7484263, 10400173, 17884436, 64053481, 274098360]; [n le 20 select I[n] else 97198*Self(n-10)-Self(n-20): n in [1..40]]; // Vincenzo Librandi, Dec 20 2013
CROSSREFS
Sequence in context: A107462 A190863 A022132 * A339272 A280385 A190122
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 19 2013
STATUS
approved