login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A022132
Fibonacci sequence beginning 4, 13.
2
4, 13, 17, 30, 47, 77, 124, 201, 325, 526, 851, 1377, 2228, 3605, 5833, 9438, 15271, 24709, 39980, 64689, 104669, 169358, 274027, 443385, 717412, 1160797, 1878209, 3039006, 4917215, 7956221, 12873436, 20829657, 33703093, 54532750, 88235843, 142768593
OFFSET
0,1
FORMULA
From Alois P. Heinz, Jul 31 2008: (Start)
G.f.: (4+9*x)/(1-x-x^2).
a(n) = term (1,1) in the 1x2 matrix [4,9] . [1,1; 1,0]^n. (End)
a(n) = Lucas(n+4) + Fibonacci(n-4). - Greg Dresden and Kyle Wood, Mar 03 2022
MAPLE
a:= n -> (Matrix([[4, 9]]).Matrix([[1, 1], [1, 0]])^n)[1, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
LinearRecurrence[{1, 1}, {4, 13}, 40] (* Harvey P. Dale, Jul 04 2017 *)
CROSSREFS
Sequence in context: A246145 A107462 A190863 * A041559 A339272 A280385
KEYWORD
nonn,easy
STATUS
approved