login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039797
Triangle of numbers of Dyck paths.
1
1, 1, 1, 3, 3, 1, 14, 14, 6, 1, 84, 84, 40, 10, 1, 594, 594, 300, 90, 15, 1, 4719, 4719, 2475, 825, 175, 21, 1, 40898, 40898, 22022, 7865, 1925, 308, 28, 1, 379236, 379236, 208208, 78078, 21021, 4004, 504, 36, 1, 3711916, 3711916, 2068560, 804440, 231868, 49686, 7644, 780, 45, 1
OFFSET
0,4
LINKS
D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumérative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
FORMULA
T(n, k) = (2n-k)!*(2n-k+2)!*(k+3)!/((n-k)!*(n-k+1)!*k!*(n+2)!*(n+3)!) for 0 <= k <= n. - Emeric Deutsch, Apr 29 2004
EXAMPLE
Triangle begins:
1,
1, 1,
3, 3, 1,
14, 14, 6, 1,
84, 84, 40, 10, 1,
594, 594, 300, 90, 15, 1,
4719, 4719, 2475, 825, 175, 21, 1,
...
MAPLE
T:=(n, k)->(2*n-k)!*(2*n-k+2)!*(k+3)!/(n-k)!/(n-k+1)!/k!/(n+2)!/(n+3)!: seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
Flatten[Table[((2n-k)!(2n-k+2)!(k+3)!)/((n-k)!(n-k+1)!k!(n+2)!(n+3)!), {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Jan 27 2012 *)
PROG
(PARI) T(n, k) = (2*n-k)!*(2*n-k+2)!*(k+3)!/((n-k)!*(n-k+1)!*k!*(n+2)!*(n+3)!);
matrix(8, 8, n, k, if (n>=k, T(n-1, k-1))) \\ Michel Marcus, Mar 05 2020
(Magma) /* As triangle */ [[Factorial(2*n - k) * Factorial(2*n - k + 2) * Factorial(k + 3) / (Factorial(n - k) * Factorial(n - k + 1) * Factorial(k) * Factorial(n + 2) * Factorial(n + 3)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Mar 06 2020
CROSSREFS
Reflection of A039798.
Sequence in context: A115193 A227343 A216294 * A143171 A112292 A001497
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from Emeric Deutsch, Apr 29 2004
STATUS
approved