OFFSET
0,4
LINKS
D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumérative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
FORMULA
T(n, k) = (2n-k)!*(2n-k+2)!*(k+3)!/((n-k)!*(n-k+1)!*k!*(n+2)!*(n+3)!) for 0 <= k <= n. - Emeric Deutsch, Apr 29 2004
EXAMPLE
Triangle begins:
1,
1, 1,
3, 3, 1,
14, 14, 6, 1,
84, 84, 40, 10, 1,
594, 594, 300, 90, 15, 1,
4719, 4719, 2475, 825, 175, 21, 1,
...
MAPLE
T:=(n, k)->(2*n-k)!*(2*n-k+2)!*(k+3)!/(n-k)!/(n-k+1)!/k!/(n+2)!/(n+3)!: seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
Flatten[Table[((2n-k)!(2n-k+2)!(k+3)!)/((n-k)!(n-k+1)!k!(n+2)!(n+3)!), {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Jan 27 2012 *)
PROG
(PARI) T(n, k) = (2*n-k)!*(2*n-k+2)!*(k+3)!/((n-k)!*(n-k+1)!*k!*(n+2)!*(n+3)!);
matrix(8, 8, n, k, if (n>=k, T(n-1, k-1))) \\ Michel Marcus, Mar 05 2020
(Magma) /* As triangle */ [[Factorial(2*n - k) * Factorial(2*n - k + 2) * Factorial(k + 3) / (Factorial(n - k) * Factorial(n - k + 1) * Factorial(k) * Factorial(n + 2) * Factorial(n + 3)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Mar 06 2020
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Apr 29 2004
STATUS
approved