login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numbers of Dyck paths.
1

%I #25 Feb 21 2022 01:01:17

%S 1,1,1,3,3,1,14,14,6,1,84,84,40,10,1,594,594,300,90,15,1,4719,4719,

%T 2475,825,175,21,1,40898,40898,22022,7865,1925,308,28,1,379236,379236,

%U 208208,78078,21021,4004,504,36,1,3711916,3711916,2068560,804440,231868,49686,7644,780,45,1

%N Triangle of numbers of Dyck paths.

%H D. Gouyou-Beauchamps, <a href="https://doi.org/10.1007/BFb0072513">Chemins sous-diagonaux et tableau de Young</a>, pp. 112-125 of "Combinatoire Enumérative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

%H <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a>

%F T(n, k) = (2n-k)!*(2n-k+2)!*(k+3)!/((n-k)!*(n-k+1)!*k!*(n+2)!*(n+3)!) for 0 <= k <= n. - _Emeric Deutsch_, Apr 29 2004

%e Triangle begins:

%e 1,

%e 1, 1,

%e 3, 3, 1,

%e 14, 14, 6, 1,

%e 84, 84, 40, 10, 1,

%e 594, 594, 300, 90, 15, 1,

%e 4719, 4719, 2475, 825, 175, 21, 1,

%e ...

%p T:=(n,k)->(2*n-k)!*(2*n-k+2)!*(k+3)!/(n-k)!/(n-k+1)!/k!/(n+2)!/(n+3)!: seq(seq(T(n,k),k=0..n),n=0..10);

%t Flatten[Table[((2n-k)!(2n-k+2)!(k+3)!)/((n-k)!(n-k+1)!k!(n+2)!(n+3)!),{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Jan 27 2012 *)

%o (PARI) T(n, k) = (2*n-k)!*(2*n-k+2)!*(k+3)!/((n-k)!*(n-k+1)!*k!*(n+2)!*(n+3)!);

%o matrix(8, 8, n, k, if (n>=k, T(n-1,k-1))) \\ _Michel Marcus_, Mar 05 2020

%o (Magma) /* As triangle */ [[Factorial(2*n - k) * Factorial(2*n - k + 2) * Factorial(k + 3) / (Factorial(n - k) * Factorial(n - k + 1) * Factorial(k) * Factorial(n + 2) * Factorial(n + 3)): k in [0..n]]: n in [0.. 10]]; // _Vincenzo Librandi_, Mar 06 2020

%Y Reflection of A039798.

%K nonn,tabl,easy,nice

%O 0,4

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, Apr 29 2004