Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Sep 08 2022 08:44:53
%S 2,3,7,11,23,31,43,47,59,67,71,79,83,103,107,131,139,167,179,191,211,
%T 223,227,239,263,283,311,331,347,359,367,383,419,431,439,443,463,467,
%U 479,499,503,547,563,571,587,599,607,619,643,647,659,683,691,719,743
%N Primes p such that p-1 is squarefree.
%C An equivalent definition: numbers n such that phi(n) is equal to the squarefree kernel of n-1.
%C Minimal value of first differences (between odd terms) is 4. Primes p such that both p and p + 4 are terms are: 3, 7, 43, 67, 79, 103, 223, 439, 463, 499, 643, 823, ... - _Zak Seidov_, Apr 16 2013
%C The density of this set in A000040 is Artin's constant A = A005596 = 37.39...%, see Mirsky. - _Charles R Greathouse IV_, Oct 26 2015
%H N. J. A. Sloane, <a href="/A039787/b039787.txt">Table of n, a(n) for n = 1..25000</a>, Oct 25 2015 (extending earlier b-file of _Zak Seidov_)
%H Theodor Estermann, <a href="http://eudml.org/doc/159528">Einige Sätze über quadratfreie Zahlen</a>, Math. Ann. 105:1 (1931), pp. 653-662.
%H Leon Mirsky, <a href="http://www.jstor.org/stable/2305811">The number of representations of an integer as the sum of a prime and a k-free integer</a>, American Mathematial Monthly 56:1 (1949), pp. 17-19.
%e phi(43)=42, 42=2^1*3^1*7^1, 2*3*7=42.
%e p=223 is here because p-1=222=2*3*37
%p isA039787 := proc(n)
%p if isprime(n) then
%p numtheory[issqrfree](n-1) ;
%p else
%p false;
%p end if;
%p end proc:
%p for n from 2 to 100 do
%p if isA039787(n) then
%p printf("%d,",n) ;
%p end if;
%p end do: # _R. J. Mathar_, Apr 17 2013
%p with(numtheory): lis:=[]; for n from 1 to 10000 do if issqrfree(ithprime(n)-1) then lis:=[op(lis), ithprime(n)]; fi; od: lis; # _N. J. A. Sloane_, Oct 25 2015
%t Select[Prime[Range[132]],SquareFreeQ[#-1]&](* _Zak Seidov_, Aug 22 2012 *)
%o (Magma) [p: p in PrimesUpTo(780) | IsSquarefree(p-1)]; // _Bruno Berselli_, Mar 03 2011
%o (PARI) is(n)=isprime(n) && issquarefree(n-1) \\ _Charles R Greathouse IV_, Jul 02 2013
%o (PARI) forprime(p=2, 1e3, if(issquarefree(p-1), print1(p", "))); \\ _Altug Alkan_, Oct 26 2015
%Y Cf. A000010, A007947, A049092 (complement).
%K nonn
%O 1,1
%A _Olivier Gérard_
%E More terms from _Labos Elemer_