OFFSET
1,1
COMMENTS
Or, a(n) = lim_k {s(k,n)} where s(k,n) is defined inductively on k by: s(1,n) = n; s(k+1,n) = 1 + phi(s(k,n)). - Joseph L. Pe, Apr 30 2002
Sequence A229487 gives the conjectured largest number that converges to prime(n). - T. D. Noe, Oct 17 2013
For n>1, phi(n) <= n-1, with equality iff n is prime. So the trajectory decreases until it hits a prime. So a(n) always exists. - N. J. A. Sloane, Sep 22 2017
REFERENCES
Alexander S. Karpenko, Lukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 51.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
EXAMPLE
s(24,1) = 24, s(24,2) = 1 + phi(24) = 1 + 8 = 9, s(24,3) = 1 + phi(9) = 1 + 6 = 7, s(24,4) = 1 + phi(7) = 1 + 6 = 7,.... Therefore a(24) = lim_k {s(24,k)} = 7.
MAPLE
A039650 := proc(n)
local nitr, niitr ;
niitr := n ;
while true do:
nitr := 1+numtheory[phi](niitr) ;
if nitr = niitr then
return nitr ;
end if;
niitr := nitr ;
end do:
end proc:
seq(A039650(n), n=1..40) ; # R. J. Mathar, Dec 11 2019
MATHEMATICA
f[n_] := FixedPoint[1 + EulerPhi[ # ] &, n]; Table[ f[n], {n, 1, 75}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved