This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038517 Decimal expansion of Gauss-Kuzmin-Wirsing constant. 4
 3, 0, 3, 6, 6, 3, 0, 0, 2, 8, 9, 8, 7, 3, 2, 6, 5, 8, 5, 9, 7, 4, 4, 8, 1, 2, 1, 9, 0, 1, 5, 5, 6, 2, 3, 3, 1, 1, 0, 8, 7, 7, 3, 5, 2, 2, 5, 3, 6, 5, 7, 8, 9, 5, 1, 8, 8, 2, 4, 5, 4, 8, 1, 4, 6, 7, 2, 2, 6, 9, 9, 5, 2, 9, 4, 2, 4, 6, 9, 1, 0, 9, 8, 4, 3, 4, 0, 8, 1, 1, 9, 3, 4, 3, 6, 3, 6, 3, 6, 8, 1, 1, 0, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES T. Bedford et al., eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford, 1991, esp. p. 204. H. Daude, P. Flajolet and B. Vallee, An average-case analysis of the Gaussian algorithm for lattice reduction, INRIA, 1996. S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 151-156. LINKS Harry J. Smith, Table of n, a(n) for n=0,...,381 H. Daude, P. Flajolet and B. Vallee, An average-case analysis of the Gaussian algorithm for lattice reduction, INRIA, 1996. S. R. Finch, The Gauss-Kuzmin-Wirsing Constant Simon Plouffe, The Gauss-Kuzmin-Wirsing constant Simon Plouffe, The Gauss-Kuzmin-Wirsing constant Eric Weisstein's World of Mathematics, Kuzmin-Wirsing Constant EXAMPLE 0.303663002898732658597448121901... MATHEMATICA m[j_ , k_] := m[j, k] = ((-1)^j/(j!*(-2)^k))* Sum[Binomial[k, i]*(-2)^i*Pochhammer[i+2, j]* (Zeta[i+j+2]*(2^(i+j+2) - 1) - 2^(i+j+2)), {i, 0, k}] // N[#, 120]&; n = 230; \$MaxExtraPrecision = 300; t = Table[m[j, k] , {j, 0, n-1}, {k, 0, n-1}] ; g = (Sort @ Abs @ Eigenvalues[t])[[-2]]; RealDigits[g, 10, 105] // First (* Jean-François Alcover, Jun 29 2011, after MathWorld *) PROG (PARI) { default(realprecision, 382); lambda=0.\ 30366300289873265859744812190155623311087735225365\ 78951882454814672269952942469109843408119343636368\ 11098272263710616938474614859745801316065265381818\ 23787913244613989647642974095044629375949048702977\ 28772511058335175922044472408659119650778105589295\ 79186714752925653642591844121784234492057255294269\ 10040657788006767324303643964013896927671340737822\ 86711534915435462112848419717968; x=10*lambda; for (n=0, 381, d=floor(x); x=(x-d)*10; write("b038517.txt", n, " ", d)); } [From Harry J. Smith, May 13 2009] CROSSREFS Cf. A007515. Sequence in context: A247734 A010599 A226568 * A055949 A165012 A198126 Adjacent sequences:  A038514 A038515 A038516 * A038518 A038519 A038520 KEYWORD nonn,cons AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Aug 03 2002 Extended by Eric W. Weisstein using a computation of Keith Briggs (keith.briggs(AT)bt.com), Jul 08, 2003 Fixed my PARI program, had -n Harry J. Smith, May 19 2009 Corrected errors in sequence using the b-file. - N. J. A. Sloane, Aug 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .