login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.
6

%I #17 Jan 05 2025 19:51:35

%S 1,0,-1,3,-8,21,-54,134,-318,720,-1560,3259,-6641,13391,-27107,55657,

%T -116244,245823,-521738,1101566,-2299215,4730990,-9601095,19273729,

%U -38446742,76598275,-153119606,308061214,-624460449,1274268038,-2611866713,5362888620,-11003127203,22516189988

%N Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.

%C The triangle K is A126713.

%H Temba Shonhiwa, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/37-1/shonhiwa.pdf">A Generalization of the Euler and Jordan Totient Functions</a>, Fib. Quart., 37 (1999), 67-76.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F Inverse binomial transform of tau(n) = A000005(n): Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000005(k). - _Vladeta Jovovic_, Oct 29 2002

%F E.g.f.: exp(-x)*Sum_{k>=1} d(k)*x^k/k!. - _Ilya Gutkovskiy_, Nov 26 2017

%Y Cf. A126713, A020921.

%K sign,changed

%O 1,4

%A Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)

%E Better description from Michael Somos