%I #15 Nov 27 2017 12:41:42
%S 1,0,-1,3,-8,21,-54,134,-318,720,-1560,3259,-6641,13391,-27107,55657,
%T -116244,245823,-521738,1101566,-2299215,4730990,-9601095,19273729,
%U -38446742,76598275,-153119606,308061214,-624460449,1274268038,-2611866713,5362888620,-11003127203,22516189988
%N Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.
%C The triangle K is A126713.
%H Temba Shonhiwa, <a href="http://www.fq.math.ca/Scanned/37-1/shonhiwa.pdf">A Generalization of the Euler and Jordan Totient Functions</a>, Fib. Quart., 37 (1999), 67-76.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F Inverse binomial transform of tau(n) = A000005(n): Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000005(k). - _Vladeta Jovovic_, Oct 29 2002
%F E.g.f.: exp(-x)*Sum_{k>=1} d(k)*x^k/k!. - _Ilya Gutkovskiy_, Nov 26 2017
%Y Cf. A126713, A020921.
%K sign
%O 1,4
%A Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)
%E Better description from Michael Somos