login
A038142
Number of planar cata-polyhexes with n cells.
10
1, 1, 2, 5, 12, 36, 118, 411, 1489, 5572, 21115, 81121, 314075, 1224528, 4799205
OFFSET
1,3
COMMENTS
Number of cata-condensed benzenoid hydrocarbons with n hexagons.
a(n) is the number of n-celled polyhexes with perimeter 4n+2. 4n+2 is the maximal perimeter of an n-celled polyhex. a(n) is the number of n-celled polyhexes that have a tree as their connectedness graph (vertices of this graph correspond to cells and two vertices are connected if the corresponding cells have a common edge). - Tanya Khovanova, Jul 27 2007
REFERENCES
N. Trinajstić, S. Nikolić, J. V. Knop, W. R. Müller and K. Szymanski, Computational Chemical Graph Theory: Characterization, Enumeration, and Generation of Chemical Structures by Computer Methods, Ellis Horwood, 1991.
LINKS
A. T. Balaban, J. Brunvoll, B. N. Cyvin and S. J. Cyvin, Enumeration of branched catacondensed benzenoid hydrocarbons and their numbers of Kekulé structures, Tetrahedron, 44(1), 221-228 (1998). See Table 1.
Wenchen He and Wenjie He, Generation and enumeration of planar polycyclic aromatic hydrocarbons, Tetrahedron 42.19 (1986): 5291-5299. See Table 3.
J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
Eric Weisstein's World of Mathematics, Polyhex.
Eric Weisstein's World of Mathematics, Fusene.
FORMULA
a(n) = A003104(n) + A323851(n). - Andrey Zabolotskiy, Feb 15 2023
CROSSREFS
a(n) <= A000228(n), a(n) <= A057779(2n+1).
Sequence in context: A197444 A094717 A323933 * A287427 A267397 A267398
KEYWORD
nonn,hard,more,changed
EXTENSIONS
a(11) from Tanya Khovanova, Jul 27 2007
a(12)-a(14) from John Mason, May 13 2021
a(15) from Trinajstić et al. (Table 4.2) added by Andrey Zabolotskiy, Feb 08 2023
STATUS
approved