OFFSET
1,2
COMMENTS
Due mostly to the efforts of Dean Hickerson, supported by David W. Wilson and Michael Kleber, it is now known that this has period 12 beginning at n=8.
LINKS
Dean Hickerson and Michael Kleber, Reducing a Set by Subtracting Squares, J. Integer Sequences, Vol. 2, 1999, #4.
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,-1,0,0,1).
FORMULA
a(n) = a(n-3)-a(n-6)+a(n-9) for n>16. - Colin Barker, Oct 01 2014
G.f.: x*(4*x^15 +60*x^14 +12*x^13 +8*x^12 -60*x^11 -12*x^10 -8*x^9 +60*x^8 +12*x^7 +7*x^6 -63*x^5 -12*x^4 -15*x^3 -3*x -1) / ((x -1)*(x^2 +1)*(x^2 +x +1)*(x^4 -x^2 +1)). - Colin Barker, Oct 01 2014
EXAMPLE
a(2) = 3 from (1,2); a(3) = 0 from ((1,2),3); a(4) = 16 from (((1,2),3),4); a(5) = 15 from ((((2,3),5),1),4)
a(6) = 63 from (((1,4),(3,5)),(2,6)) [ Michael Kleber ]
a(7) = 8 from (((((4,5),6),(2,7)),1),3) [ Kleber ]
a(8) = 0 from ((((4,5),7)(2,6))((1,3),8)) [ Guy ]
a(9) = 3 from (2,(1,(((6,7),((3,4),8)),(5,9)))) [ Kleber ]
a(10)= 1 from ((((((((4,5),9),6),(8,10)),2),3),7),1) [ This and the following are due to Dean Hickerson ]
a(11)= 0 from ((((((3,7),(9,11)),6),(8,10)),(1,2)),(4,5))
a(12)= 0 from ((((((1,3),7),(8,10)),(((5,6),9),(11,12))),2),4)
a(13)= 1 from (((((((((3,7),(9,11)),6),(8,10)),5),(12,13)),2),4),1) ...
MATHEMATICA
LinearRecurrence[{0, 0, 1, 0, 0, -1, 0, 0, 1}, {1, 3, 0, 16, 15, 63, 8, 0, 3, 1, 0, 0, 1, 3, 0, 4}, 120] (* Harvey P. Dale, Jul 29 2015 *)
PROG
(PARI) a(n)=if(n<4||n>7, n*(n+1)/2%6, [16, 15, 63, 8][n-3]) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved