Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 14 2023 05:33:57
%S 1,12,123,1230,12301,123012,1230123,12301230,123012301,1230123012,
%T 12301230123,123012301230,1230123012301,12301230123012,
%U 123012301230123,1230123012301230,12301230123012301,123012301230123012,1230123012301230123,12301230123012301230
%N Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,3,0.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (10,0,0,1,-10).
%F a(0)=1, a(1)=12, a(2)=123, a(3)=1230, a(4)=12301, a(n) = 10*a(n-1) + a(n-4) - 10*a(n-5). - _Harvey P. Dale_, Jun 07 2011
%F G.f.: x*(1+2*x+3*x^2) / ( (x-1)*(10*x-1)*(1+x)*(x^2+1) ). - _R. J. Mathar_, Aug 12 2013
%t Rest[RecurrenceTable[{a[0]==0, a[n]==10a[n-1]+Mod[n,4]},a[n], {n,20}]] (* or *) LinearRecurrence[{10,0,0,1,-10},{1,12,123,1230,12301},20] (* _Harvey P. Dale_, Jun 07 2011 *)
%o (PARI) Vec(x*(1+2*x+3*x^2)/((x-1)*(10*x-1)*(1+x)*(x^2+1)) + O(x^25)) \\ _Jinyuan Wang_, Apr 14 2020
%K nonn,base,easy
%O 1,2
%A _Clark Kimberling_
%E More terms from _Harvey P. Dale_, Jun 07 2011