login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037302
Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume is v(n), then a(n) = ((n-1)^2)! * v(n) / n^(n-1).
3
1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000
OFFSET
1,3
COMMENTS
The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices.
Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002
LINKS
Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope
Matthias Beck, Stanley's Major Contributions to Ehrhart Theory, arXiv preprint arXiv:1407.0255 [math.CO], 2014.
Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, arXiv:math/0202267 [math.CO], 2002-2005.
Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Comput. Geom. 30 (2003), no. 4, 623-637.
Petter Brändén, Jonathan Leake, and Igor Pak, Lower bounds for contingency tables via Lorentzian polynomials, arXiv:2008.05907 [math.CO], 2020.
C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, arXiv:math/9806076 [math.CO], 1998.
C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, Exper. Math. 8 (1999), 291-300.
Jesús A. De Loera, Fu Liu, and Ruriko Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope, J. Algebraic Combin. 30 (2009), no. 1, 113-139.
R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
FORMULA
a(n) = ((n-1)^2)!*A078524(n)/(n^(n-1)*A078525(n)). - Andrew Howroyd, Apr 11 2020
EXAMPLE
a(2)=1: The polytope of 2 X 2 matrices is the line segment from (1,0;0,1) to (0,1;1,0), with length v(2)=2, so a(2) = 1! * 2 / 2^1 = 1.
CROSSREFS
Numerator and denominator of v(n) are in A078524 and A078525.
Row sums of A259473.
Cf. A257493.
Sequence in context: A376748 A039515 A209426 * A341229 A157591 A005336
KEYWORD
nonn,hard,nice
AUTHOR
Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)
EXTENSIONS
v(9) computed by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu), Feb 25 2002
Edited by Dean Hickerson, Nov 27 2002
a(10) is based on a calculation of v(10) by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu) from Mar 13 2002 to May 18 2003
STATUS
approved