login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036822
Number of partitions satisfying cn(1,5) = cn(4,5) = 0.
5
0, 1, 1, 1, 2, 2, 3, 4, 4, 7, 6, 10, 11, 13, 18, 19, 25, 30, 33, 45, 47, 61, 70, 81, 100, 111, 135, 157, 177, 218, 238, 288, 328, 374, 443, 495, 579, 663, 747, 878, 973, 1134, 1281, 1448, 1670, 1863, 2135, 2414, 2705, 3103
OFFSET
1,5
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (1=4 := 0).
a(n) is the number of partitions with parts congruent to 0, 2 or 3 mod 5. - George Beck, Aug 08 2020
LINKS
FORMULA
Convolution inverse of A113428. - George Beck, May 21 2016
G.f.: Product_{k>=1} 1/((1 - x^(5*k)) * (1 - x^(5*k - 2)) * (1 - x^(5*k - 3))). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2*sqrt(2*(5+sqrt(5)))*n). - Vaclav Kotesovec, Jul 05 2016
MAPLE
c := proc(L, i, n)
local a, p;
a := 0 ;
for p in L do
if modp(p, n) = i then
a := a+1 ;
end if;
end do:
a ;
end proc:
A036822 := proc(n)
local a , p;
a := 0 ;
for p in combinat[partition](n) do
if c(p, 1, 5) = 0 then
if c(p, 4, 5) = 0 then
a := a+1 ;
end if;
end if;
end do:
a ;
end proc: # R. J. Mathar, Oct 19 2014
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Product[1/((1 - x^(5*k)) * (1 - x^(5*k-2)) * (1 - x^(5*k-3))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2016 *)
CROSSREFS
Cf. A036820.
Sequence in context: A004056 A284334 A198317 * A056099 A084848 A342330
KEYWORD
nonn
STATUS
approved