login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of generating function of binary rooted trees of height at most n.
2

%I #28 Feb 14 2021 13:02:51

%S 1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,1,1,2,3,5,6,8,8,9,7,7,4,3,1,1,1,1,1,

%T 2,3,6,10,17,25,38,52,73,93,121,143,172,187,205,202,201,177,158,123,

%U 99,66,47,26,17,7,4,1,1,1,1,1,2,3,6,11,22,39,70,118,200,324,526

%N Triangle of coefficients of generating function of binary rooted trees of height at most n.

%H Alois P. Heinz, <a href="/A036602/b036602.txt">Rows n = 0..12, flattened</a>

%H E. M. Rains and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/cayley.html">On Cayley's Enumeration of Alkanes (or 4-Valent Trees)</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%e Triangle begins:

%e 1

%e 1, 1;

%e 1, 1, 1, 1;

%e 1, 1, 1, 2, 2, 2, 1, 1;

%e 1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1;

%e 1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, ...

%e 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526, 825, 1290, 1958, ...

%e 1, 1, 1, 2, 3, 6, 11, 23, 45, 90, 171, 325, 598, 1097, 1972, 3531, 6225, ...

%p b:= proc(n, h) option remember; `if`(n<2, n, `if`(h<1, 0, `if`(n::odd, 0,

%p (t-> t*(1-t)/2)(b(n/2, h-1)))+add(b(i, h-1)*b(n-i, h-1), i=1..n/2)))

%p end:

%p A:= (n, k)-> b(k+1, n):

%p seq(seq(A(n, k), k=0..2^n-1), n=0..6); # _Alois P. Heinz_, Sep 08 2017

%t b[n_, h_] := b[n, h] = If[n < 2, n, If[h < 1, 0, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2, h-1]]] + Sum[b[i, h-1]*b[n-i, h-1], {i, 1, n/2}]]];

%t A[n_, k_] := b[k+1, n];

%t Table[Table[A[n, k], {k, 0, 2^n-1}], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Feb 14 2021, after _Alois P. Heinz_ *)

%Y Cf. A001190, A036587, A036588, A036589, A036590, A036591, A036592.

%K nonn,tabf,nice,easy

%O 0,11

%A _N. J. A. Sloane_