login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036602
Triangle of coefficients of generating function of binary rooted trees of height at most n.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1, 1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, 205, 202, 201, 177, 158, 123, 99, 66, 47, 26, 17, 7, 4, 1, 1, 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526
OFFSET
0,11
LINKS
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
EXAMPLE
Triangle begins:
1
1, 1;
1, 1, 1, 1;
1, 1, 1, 2, 2, 2, 1, 1;
1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1;
1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, ...
1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526, 825, 1290, 1958, ...
1, 1, 1, 2, 3, 6, 11, 23, 45, 90, 171, 325, 598, 1097, 1972, 3531, 6225, ...
MAPLE
b:= proc(n, h) option remember; `if`(n<2, n, `if`(h<1, 0, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2, h-1)))+add(b(i, h-1)*b(n-i, h-1), i=1..n/2)))
end:
A:= (n, k)-> b(k+1, n):
seq(seq(A(n, k), k=0..2^n-1), n=0..6); # Alois P. Heinz, Sep 08 2017
MATHEMATICA
b[n_, h_] := b[n, h] = If[n < 2, n, If[h < 1, 0, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2, h-1]]] + Sum[b[i, h-1]*b[n-i, h-1], {i, 1, n/2}]]];
A[n_, k_] := b[k+1, n];
Table[Table[A[n, k], {k, 0, 2^n-1}], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)
KEYWORD
nonn,tabf,nice,easy
STATUS
approved