login
A036571
Binary packing of Connell sequence (shifted once right).
2
0, 1, 3, 11, 27, 91, 347, 859, 2907, 11099, 43867, 109403, 371547, 1420123, 5614427, 22391643, 55946075, 190163803, 727034715, 2874518363, 11464452955, 45824191323, 114543668059, 389421575003
OFFSET
0,3
COMMENTS
Binary representation of n has 1's at positions specified by Connell sequence (A001614).
FORMULA
a(0)=0, a(n) = a(n-1) + 2^((2*n - floor((1/2)*(1 + sqrt(8*n - 7)))) - 1).
EXAMPLE
347=101011011 in binary, with 1's at positions 1,2,4,5,7,9.
PROG
(Python)
from itertools import count, islice
from math import isqrt
def A036571_gen(): # generator of terms
c = 0
for n in count(1):
yield c
c += 1<<(m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1)-1
A036571_list = list(islice(A036571_gen(), 25)) # Chai Wah Wu, Jul 26 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved