login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036391 a(n) = sum of order of a mod n, 0 < a < n, gcd(a, n) = 1. 4
0, 1, 3, 3, 11, 3, 21, 7, 21, 11, 63, 7, 77, 21, 23, 23, 171, 21, 183, 23, 49, 63, 333, 15, 231, 77, 183, 49, 473, 23, 441, 87, 147, 171, 161, 49, 671, 183, 161, 47, 903, 49, 903, 147, 161, 333, 1521, 47, 903, 231, 343, 161, 1727, 183, 483, 105, 427, 473, 2439, 47 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Related to a problem of Arnold.

Row sums of triangle A139366. - Wolfdieter Lang, Sep 09 2008

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..2000

Pär Kurlberg and Carl Pomerance, On a problem of Arnold: the average multiplicative order of a given integer, arXiv:1108.5209 [math.NT], 2012.

FORMULA

On the GRH, Kurlberg & Pomerance show that a(n) = n^2/log n exp(B log log n/log log log n (1 + o(1))), where B = A218342 = 0.345372.... - Charles R Greathouse IV, Oct 26 2012

If n is in A033948 then a(n)= Sum_{divisors d of phi(n)} phi(d)*d. - Geoffrey Critzer, Jan 24 2015

MAPLE

with(numtheory):

a:= n-> add(`if`(igcd(n, k)=1, order(k, n), 0), k=1..n-1):

seq(a(n), n=1..60);  # Alois P. Heinz, Oct 28 2012

MATHEMATICA

a[n_] := Sum[ If[ CoprimeQ[k, n], MultiplicativeOrder[k, n], 0], {k, 1, n-1}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Aug 19 2013 *)

PROG

(Haskell)

a036391 = sum . a139366_row  -- Reinhard Zumkeller, May 01 2013

CROSSREFS

Sequence in context: A265390 A276390 A178707 * A283138 A262528 A073106

Adjacent sequences:  A036388 A036389 A036390 * A036392 A036393 A036394

KEYWORD

nonn,nice

AUTHOR

David W. Wilson

EXTENSIONS

Adapted to the definition: a(1)=0 by Alois P. Heinz, Oct 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 07:56 EDT 2019. Contains 328026 sequences. (Running on oeis4.)