OFFSET
1,1
COMMENTS
Called Dudley Triangle after the American mathematician and writer Underwood Dudley (b. 1937). - Amiram Eldar, Jun 10 2021
Central terms are A014682(n), n>0. - Philippe Deléham, May 11 2023
REFERENCES
Clifford A. Pickover, The Dudley Triangle", Ch. 59 in Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning, Oxford, England: Oxford University Press, 2001, pp. 144-145.
LINKS
Alois P. Heinz, Rows n = 1..200, flattened
Underwood Dudley, Problem 1277: An infinite triangular array, Math. Mag., Vol. 60, No. 5 (1987), p. 328.
Wikipedia, Dudley triangle.
EXAMPLE
Triangle starts:
2;
2, 2;
2, 1, 2;
2, 0, 0, 2;
2, 6, 5, 6, 2;
2, 6, 4, 4, 6, 2;
2, 6, 3, 2, 3, 6, 2;
...
MATHEMATICA
Table[Mod[j (j + 1), r + 2], {r, 14}, {j, r}] // Flatten (* Michael De Vlieger, Sep 23 2015 *)
PROG
(C) #include <stdio.h> #include <stdlib.h> #define MAX_ROWS 100 #define USAGE "Usage: 'A036238 num' where num is the last row of the triangle to compute\n" int main(int argc, char *argv[]) { unsigned long i, j, end, ans; if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; } end = atoi(argv[1]); end = (end >= MAX_ROWS) ? MAX_ROWS: end; fprintf(stdout, "Values: "); for (i = 1; i <= end; i++) { for (j = 1; j <= i; j++) { ans = j * (j + 1) % (i +2); fprintf(stdout, "%ld, ", ans); } } fprintf(stdout, "\n"); return EXIT_SUCCESS; } /* Larry Reeves (larryr(AT)acm.org), Mar 31 2000 */
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(k*(k+1) % (n+2), ", "); ); print(); ); } \\ Michel Marcus, Sep 23 2015
CROSSREFS
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 31 2000
STATUS
approved