login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036238
Triangle of numbers a(r,j) = j*(j+1) mod r+2, r>=1, j=1..r.
1
2, 2, 2, 2, 1, 2, 2, 0, 0, 2, 2, 6, 5, 6, 2, 2, 6, 4, 4, 6, 2, 2, 6, 3, 2, 3, 6, 2, 2, 6, 2, 0, 0, 2, 6, 2, 2, 6, 1, 9, 8, 9, 1, 6, 2, 2, 6, 0, 8, 6, 6, 8, 0, 6, 2, 2, 6, 12, 7, 4, 3, 4, 7, 12, 6, 2, 2, 6, 12, 6, 2, 0, 0, 2, 6, 12, 6, 2, 2, 6, 12, 5, 0, 12, 11, 12, 0, 5, 12, 6, 2, 2, 6, 12, 4, 14, 10, 8, 8, 10, 14, 4, 12, 6, 2
OFFSET
1,1
COMMENTS
Called Dudley Triangle after the American mathematician and writer Underwood Dudley (b. 1937). - Amiram Eldar, Jun 10 2021
Central terms are A014682(n), n>0. - Philippe Deléham, May 11 2023
REFERENCES
Clifford A. Pickover, The Dudley Triangle", Ch. 59 in Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning, Oxford, England: Oxford University Press, 2001, pp. 144-145.
LINKS
Underwood Dudley, Problem 1277: An infinite triangular array, Math. Mag., Vol. 60, No. 5 (1987), p. 328.
Wikipedia, Dudley triangle.
EXAMPLE
Triangle starts:
2;
2, 2;
2, 1, 2;
2, 0, 0, 2;
2, 6, 5, 6, 2;
2, 6, 4, 4, 6, 2;
2, 6, 3, 2, 3, 6, 2;
...
MATHEMATICA
Table[Mod[j (j + 1), r + 2], {r, 14}, {j, r}] // Flatten (* Michael De Vlieger, Sep 23 2015 *)
PROG
(C) #include <stdio.h> #include <stdlib.h> #define MAX_ROWS 100 #define USAGE "Usage: 'A036238 num' where num is the last row of the triangle to compute\n" int main(int argc, char *argv[]) { unsigned long i, j, end, ans; if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; } end = atoi(argv[1]); end = (end >= MAX_ROWS) ? MAX_ROWS: end; fprintf(stdout, "Values: "); for (i = 1; i <= end; i++) { for (j = 1; j <= i; j++) { ans = j * (j + 1) % (i +2); fprintf(stdout, "%ld, ", ans); } } fprintf(stdout, "\n"); return EXIT_SUCCESS; } /* Larry Reeves (larryr(AT)acm.org), Mar 31 2000 */
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(k*(k+1) % (n+2), ", "); ); print(); ); } \\ Michel Marcus, Sep 23 2015
CROSSREFS
Cf. A014682.
Sequence in context: A232800 A248380 A090044 * A318723 A225180 A276134
KEYWORD
nonn,look,easy,tabl
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 31 2000
STATUS
approved