login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035921 Coordination sequence for diamond structure D^+_90. (Edges defined by l_1 norm = 1.) 1
1, 0, 16200, 0, 43750800, 0, 47297528280, 0, 27425793987360, 0, 9912269336940648, 0, 2448015194902257840, 0, 439668298578779894520, 0, 60071753985937273120320, 0, 6460749140008058788098440, 0, 561838152794479347081022416, 0, 40369733975261540188277953560, 0, 2439893679823103970428776675680, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.

LINKS

Georg Fischer, Table of n, a(n) for n = 0..200

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

MAPLE

f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=90.

CROSSREFS

Sequence in context: A236872 A031843 A031624 * A278607 A235845 A254163

Adjacent sequences:  A035918 A035919 A035920 * A035922 A035923 A035924

KEYWORD

nonn

AUTHOR

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

EXTENSIONS

Recomputed by N. J. A. Sloane, Nov 27 1998

Zeroes inserted by Georg Fischer, Jul 26 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)