login
A035652
Number of partitions of n into parts 7k and 7k+2 with at least one part of each type.
3
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 3, 1, 3, 1, 3, 7, 3, 8, 3, 8, 3, 8, 14, 8, 17, 8, 18, 8, 18, 26, 18, 33, 18, 36, 18, 37, 47, 37, 61, 37, 68, 37, 71, 81, 72, 106, 72, 121, 72, 128, 138, 131, 181, 132, 209, 132, 224, 228, 231, 297, 234, 347, 235, 376, 373
OFFSET
1,16
LINKS
FORMULA
G.f. : (-1 + 1/Product_{k>=0} (1 - x^(7 k + 2)))*(-1 + 1/Product_{k>=1} (1 - x^(7 k))). - Robert Price, Aug 12 2020
MATHEMATICA
nmax = 72; s1 = Range[1, nmax/7]*7; s2 = Range[0, nmax/7]*7 + 2;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *)
nmax = 72; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 12 2020 *)
KEYWORD
nonn
STATUS
approved