login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035075
a(n) = ceiling(sqrt(8*10^n)).
3
9, 29, 90, 283, 895, 2829, 8945, 28285, 89443, 282843, 894428, 2828428, 8944272, 28284272, 89442720, 282842713, 894427191, 2828427125, 8944271910, 28284271248, 89442719100, 282842712475, 894427191000, 2828427124747
OFFSET
1,1
COMMENTS
Also, first term of runs of consecutive numbers whose square starts with the digit 8.
FORMULA
a(n) = ceiling(sqrt(8*10^n)), n > 0.
MATHEMATICA
Ceiling[Sqrt[8*10^Range[30]]] (* Harvey P. Dale, Apr 12 2013 *)
PROG
(Python)
from math import isqrt
def a(n): return isqrt(8*10**n) + 1
print([a(n) for n in range(1, 25)]) # Michael S. Branicky, Sep 29 2021
CROSSREFS
Cf. A067478 (squares), A035069-A035076 (2..9), A045862.
Sequence in context: A193004 A198645 A045862 * A103535 A147268 A147376
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Nov 15 1998
STATUS
approved