login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035036
Fourier coefficients of E_{gamma,2}*E_{0,4}.
2
1, 8, -248, 1952, -8440, 25008, -60512, 134464, -270584, 474344, -775248, 1288416, -2059360, 2970352, -4168384, 6101952, -8659192, 11358864, -14704664, 19808800, -26383440, 32809216, -39940896, 51490752, -66022496, 78150008, -92080912, 115265600, -141859520
OFFSET
0,2
COMMENTS
E_{gamma,2}*E_{0,4} is the unique normalized weight-6 modular form for Gamma_0(2) with an order 1/2 zero at gamma = -1/2 + i/2 and an order 1 zero at 0.
LINKS
B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3, 257-274.
H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2001.
FORMULA
G.f.: 1 - 8 * Sum_{k>=1} k^5*q^k/(1-(-q)^k).
Expansion of (phi(q)^4 + 16 * q * psi(q^2)^4) * phi(-q)^8 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 05 2012
Expansion of (eta(q)^8 + 32 * eta(q^4)^8) * eta(q)^16 / eta(q^2)^12 in powers of q. - Michael Somos, Apr 05 2012
Convolution product of A004011 and A035016. - Michael Somos, Apr 05 2012
EXAMPLE
G.f. = 1 + 8*q - 248*q^2 + 1952*q^3 - 8440*q^4 + 25008*q^5 - 60512*q^6 + 134464*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4) EllipticTheta[ 4, 0, q]^8, {q, 0, n}]; (* Michael Somos, Aug 21 2014 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^8 + 32 q QPochhammer[ q^4]^8) QPochhammer[ q]^16 / QPochhammer[ q^2]^12, {q, 0, n}]; (* Michael Somos, Aug 21 2014 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 8 * (sigma(n, 5) - if( n%2, 0, 64 * sigma(n/2, 5))))}; /* Michael Somos, Jul 16 2004 */
(PARI) {a(n) = if( n<1, n==0, polcoeff( 1 - 8 * sum( k=1, n, (-1)^k * k^5 * x^k / (1 - x^k) + x * O(x^n)), n))}; /* Michael Somos, Apr 05 2012 */
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff((eta(x + A)^8 + 32 * x * eta(x^4 + A)^8) * eta(x + A)^16 / eta(x^2 + A)^12, n))}; /* Michael Somos, Apr 05 2012 */
(Magma) A := Basis( ModularForms( Gamma0(2), 6), 29); A[1] + 8*A[2]; /* Michael Somos, Aug 21 2014 */
CROSSREFS
Sequence in context: A299648 A219269 A029751 * A221518 A317519 A300202
KEYWORD
easy,sign
AUTHOR
Barry Brent (barryb(AT)primenet.com)
STATUS
approved