login
A034877
Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).
5
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 3, 6, 10, 6, 3, 3, 9, 16, 16, 9, 3, 4, 12, 28, 32, 28, 12, 4, 4, 16, 40, 60, 60, 40, 16, 4, 5, 20, 60, 100, 126, 100, 60, 20, 5, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6, 6, 36, 140, 350, 636, 848
OFFSET
0,4
COMMENTS
Same as A034852, but omitting the border of 0's.
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
LINKS
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Johann Cigler, Some Pascal-like triangles, 2018.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 2;
2, 4, 4, 2;
3, 6, 10, 6, 3;
3, 9, 16, 16, 9, 3;
...
PROG
(Haskell)
a034877 n k = a034877_tabl !! n !! k
a034877_row n = a034877_tabl !! n
a034877_tabl = map (init . tail) $ drop 2 a034852_tabl
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
Row sums are essentially A032085. Central column is A032095.
Sequence in context: A060369 A179004 A143979 * A224516 A023161 A023155
KEYWORD
nonn,tabl,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, May 04 2000
STATUS
approved