login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034877
Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).
5
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 3, 6, 10, 6, 3, 3, 9, 16, 16, 9, 3, 4, 12, 28, 32, 28, 12, 4, 4, 16, 40, 60, 60, 40, 16, 4, 5, 20, 60, 100, 126, 100, 60, 20, 5, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6, 6, 36, 140, 350, 636, 848
OFFSET
0,4
COMMENTS
Same as A034852, but omitting the border of 0's.
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
LINKS
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Johann Cigler, Some Pascal-like triangles, 2018.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 2;
2, 4, 4, 2;
3, 6, 10, 6, 3;
3, 9, 16, 16, 9, 3;
...
PROG
(Haskell)
a034877 n k = a034877_tabl !! n !! k
a034877_row n = a034877_tabl !! n
a034877_tabl = map (init . tail) $ drop 2 a034852_tabl
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
Row sums are essentially A032085. Central column is A032095.
Sequence in context: A060369 A179004 A143979 * A224516 A023161 A023155
KEYWORD
nonn,tabl,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, May 04 2000
STATUS
approved