OFFSET
1,1
COMMENTS
Appears to be the sequence of nonsquare n such that sigma(n)==0 (mod 3). - Benoit Cloitre, Sep 17 2002
First counterexample is 147 = 11^2 + 11*2 + 2^2 since sigma(147) = 3 * 76. See A087943. - Charles R Greathouse IV, Jun 29 2011
Numbers n such that n-th coefficient of eta(x)^3/eta(x^3) is zero where eta(x) coefficients are given by A010815. - Benoit Cloitre, Oct 06 2005
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Jul 05 2017
MATHEMATICA
Select[Range@ 105, ! Resolve[Exists[{x, y}, Reduce[# == x^2 + x y + y^2, {x, y}, Integers]]] &] (* Michael De Vlieger, Jan 06 2016 *)
PROG
(PARI) default(seriesprecision, 105); for(n=1, 105, if (polcoeff(eta(x)^3/eta(x^3)+O(x^(n+1)), n) == 0, print1(n, ", "))) \\ Benoit Cloitre, Oct 06 2005
(PARI) x='x+O('x^100); p=eta(x)^3/eta(x^3); for(n=1, 99, if(polcoeff(p, n)==0, print1(n, ", "))); \\ Altug Alkan, Nov 08 2015
(PARI) list(lim)=my(v=List(), y, t); lim\=1; for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y++)); v=Set(v); setminus([2..lim], v) \\ Charles R Greathouse IV, Jul 05 2017
(Haskell)
a034020 n = a034020_list !! (n-1)
a034020_list = f [0..] a003136_list where
f (x:xs) ys'@(y:ys) | x < y = x : f xs ys'
| otherwise = f xs ys
-- Reinhard Zumkeller, Oct 30 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from James A. Sellers, May 04 2000
Correct offset=1 by Ray Chandler, Jan 29 2009
STATUS
approved