login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034020
Not of the form x^2 + x*y + y^2.
11
2, 5, 6, 8, 10, 11, 14, 15, 17, 18, 20, 22, 23, 24, 26, 29, 30, 32, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 72, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105
OFFSET
1,1
COMMENTS
Appears to be the sequence of nonsquare n such that sigma(n)==0 (mod 3). - Benoit Cloitre, Sep 17 2002
First counterexample is 147 = 11^2 + 11*2 + 2^2 since sigma(147) = 3 * 76. See A087943. - Charles R Greathouse IV, Jun 29 2011
Numbers n such that n-th coefficient of eta(x)^3/eta(x^3) is zero where eta(x) coefficients are given by A010815. - Benoit Cloitre, Oct 06 2005
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
LINKS
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Jul 05 2017
MATHEMATICA
Select[Range@ 105, ! Resolve[Exists[{x, y}, Reduce[# == x^2 + x y + y^2, {x, y}, Integers]]] &] (* Michael De Vlieger, Jan 06 2016 *)
PROG
(PARI) default(seriesprecision, 105); for(n=1, 105, if (polcoeff(eta(x)^3/eta(x^3)+O(x^(n+1)), n) == 0, print1(n, ", "))) \\ Benoit Cloitre, Oct 06 2005
(PARI) x='x+O('x^100); p=eta(x)^3/eta(x^3); for(n=1, 99, if(polcoeff(p, n)==0, print1(n, ", "))); \\ Altug Alkan, Nov 08 2015
(PARI) list(lim)=my(v=List(), y, t); lim\=1; for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y++)); v=Set(v); setminus([2..lim], v) \\ Charles R Greathouse IV, Jul 05 2017
(Haskell)
a034020 n = a034020_list !! (n-1)
a034020_list = f [0..] a003136_list where
f (x:xs) ys'@(y:ys) | x < y = x : f xs ys'
| otherwise = f xs ys
-- Reinhard Zumkeller, Oct 30 2011
CROSSREFS
Cf. A003136 (complement), A003627 (primes). Subsequence of A087943.
Sequence in context: A253061 A320730 A087943 * A187476 A121411 A224889
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, May 04 2000
Correct offset=1 by Ray Chandler, Jan 29 2009
STATUS
approved