login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A033202
Primes of form x^2+93*y^2.
3
97, 109, 157, 193, 349, 373, 397, 421, 541, 577, 661, 733, 769, 853, 877, 937, 997, 1033, 1093, 1117, 1213, 1237, 1249, 1321, 1489, 1597, 1609, 1621, 1657, 1693, 1741, 1777, 1861, 1993, 2017, 2029, 2053, 2113, 2221, 2281, 2341, 2389, 2437, 2521, 2593, 2713, 2797, 2857, 2953
OFFSET
1,1
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361} (mod 372). - T. D. Noe, Apr 29 2008
MATHEMATICA
QuadPrimes2[1, 0, 93, 10000] (* see A106856 *)
Select[Prime@Range[500], MemberQ[{1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}, Mod[#, 372]] &] (* Vincenzo Librandi, Jul 02 2016 *)
PROG
(Magma) [p: p in PrimesUpTo(3000) | p mod 372 in {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}]; // Vincenzo Librandi, Jul 02 2016
(Magma) [p: p in PrimesUpTo(3000) | NormEquation(93, p) eq true]; // Bruno Berselli, Jul 03 2016
CROSSREFS
Cf. A139643.
Sequence in context: A346021 A232767 A039490 * A160032 A136477 A078494
KEYWORD
nonn,easy
AUTHOR
STATUS
approved