login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^i has d(i)=1 for m-i odd.
1

%I #17 Feb 15 2021 22:31:10

%S 1,2,4,7,12,13,14,21,22,23,37,40,43,64,67,70,111,112,113,120,121,122,

%T 129,130,131,192,193,194,201,202,203,210,211,212,334,337,340,361,364,

%U 367,388,391,394,577,580,583,604,607,610,631

%N Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^i has d(i)=1 for m-i odd.

%H Robert Israel, <a href="/A033054/b033054.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Robert Israel_, Jun 06 2016: (Start)

%F a(3n+3) = 9a(n)+4.

%F If A110654(n) is in A132141 then a(3n+2) = 9a(n)+3 and a(3n+4) = 9a(n)+5

%F otherwise a(3n+2) = 9a(n)+1 and a(3n+4) = 9a(n)+7.

%F G.f. satisfies g(x) = 9(x^2+x^3+x^4)g(x^3) + (x+2x^2+4x^3+6x^4-x^5)/(1-x^3) + ((2+2x)/(x+x^2+x^3)) Sum_{k>=1}(x^(2*3^k)-x^(4*3^k)).

%F (End)

%p N:= 1000: # to get a(1) to a(N)

%p K:= ceil((N-4)/3):

%p Dmax:= ilog[3](ceil(K/2+1)):

%p A:= Vector(3*K+4):

%p A[1..4]:= <1,2,4,7>:

%p for d from 0 to Dmax do

%p for k from 2*3^d-1 to min(4*3^d-2,K) do

%p A[3*k+2]:= 9*A[k]+3;

%p A[3*k+3]:= 9*A[k]+4;

%p A[3*k+4]:= 9*A[k]+5

%p od:

%p for k from 4*3^d-1 to min(2*3^(d+1)-2,K) do

%p A[3*k+2]:= 9*A[k]+1;

%p A[3*k+3]:= 9*A[k]+4;

%p A[3*k+4]:= 9*A[k]+7

%p od:

%p od:

%p seq(A[i],i=1..N); # _Robert Israel_, Jun 06 2016

%K nonn,base

%O 1,2

%A _Clark Kimberling_

%E Name corrected by _Robert Israel_, Jun 06 2016