login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033054
Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^i has d(i)=1 for m-i odd.
1
1, 2, 4, 7, 12, 13, 14, 21, 22, 23, 37, 40, 43, 64, 67, 70, 111, 112, 113, 120, 121, 122, 129, 130, 131, 192, 193, 194, 201, 202, 203, 210, 211, 212, 334, 337, 340, 361, 364, 367, 388, 391, 394, 577, 580, 583, 604, 607, 610, 631
OFFSET
1,2
LINKS
FORMULA
From Robert Israel, Jun 06 2016: (Start)
a(3n+3) = 9a(n)+4.
If A110654(n) is in A132141 then a(3n+2) = 9a(n)+3 and a(3n+4) = 9a(n)+5
otherwise a(3n+2) = 9a(n)+1 and a(3n+4) = 9a(n)+7.
G.f. satisfies g(x) = 9(x^2+x^3+x^4)g(x^3) + (x+2x^2+4x^3+6x^4-x^5)/(1-x^3) + ((2+2x)/(x+x^2+x^3)) Sum_{k>=1}(x^(2*3^k)-x^(4*3^k)).
(End)
MAPLE
N:= 1000: # to get a(1) to a(N)
K:= ceil((N-4)/3):
Dmax:= ilog[3](ceil(K/2+1)):
A:= Vector(3*K+4):
A[1..4]:= <1, 2, 4, 7>:
for d from 0 to Dmax do
for k from 2*3^d-1 to min(4*3^d-2, K) do
A[3*k+2]:= 9*A[k]+3;
A[3*k+3]:= 9*A[k]+4;
A[3*k+4]:= 9*A[k]+5
od:
for k from 4*3^d-1 to min(2*3^(d+1)-2, K) do
A[3*k+2]:= 9*A[k]+1;
A[3*k+3]:= 9*A[k]+4;
A[3*k+4]:= 9*A[k]+7
od:
od:
seq(A[i], i=1..N); # Robert Israel, Jun 06 2016
CROSSREFS
Sequence in context: A267699 A193841 A052474 * A361724 A359338 A362652
KEYWORD
nonn,base
EXTENSIONS
Name corrected by Robert Israel, Jun 06 2016
STATUS
approved