The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032439 a(n) = Sum_{i=0..4} binomial(Fibonacci(n),i). 1
 1, 2, 2, 4, 8, 31, 163, 1093, 7547, 52956, 368831, 2559196, 17676661, 121774888, 837294004, 5750356236, 39462206694, 270686172409, 1856193470231, 12726292640107, 87243213304941, 598041351085972 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Israel, Table of n, a(n) for n = 0..1198 Index entries for linear recurrences with constant coefficients, signature (11,-17,-124,276,396,-902,-462,946,220,-340,-44,39,3,-1). FORMULA G.f.: ( 1- 9*x -3*x^2 +140*x^3 -30*x^4 -689*x^5 +12*x^6 +1189*x^7 +129*x^8 -572*x^9 -46*x^10 +77*x^11 +5*x^12 -2*x^13 ) / ( (x-1) *(1+x) *(x^2+4*x-1) *(x^2-7*x+1) *(x^2+3*x+1) *(x^2-x-1) *(x^2-3*x+1) *(x^2+x-1) ). - Robert Israel, Mar 06 2019 MAPLE ff:= unapply(expand(add(binomial(x, i), i=0..4)), x): seq(ff(combinat:-fibonacci(n)), n=0..50); # Robert Israel, Mar 06 2019 MATHEMATICA LinearRecurrence[{11, -17, -124, 276, 396, -902, -462, 946, 220, -340, -44, 39, 3, -1}, {1, 2, 2, 4, 8, 31, 163, 1093, 7547, 52956, 368831, 2559196, 17676661, 121774888}, 50] (* Georg Fischer May 09 2020 *) PROG (PARI) a(n) = my(fn=fibonacci(n)); sum(i=0, 4, binomial(fn, i)); \\ Michel Marcus, May 09 2020 CROSSREFS Sequence in context: A325514 A032440 A145869 * A096096 A300759 A100799 Adjacent sequences:  A032436 A032437 A032438 * A032440 A032441 A032442 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 09:13 EDT 2020. Contains 337166 sequences. (Running on oeis4.)