login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032166 Number of aperiodic necklaces of n beads of 11 colors. 3
11, 55, 440, 3630, 32208, 295020, 2783880, 26793030, 261994040, 2593726344, 25937424600, 261535549220, 2655593241840, 27124986721140, 278483211283552, 2871858103075830, 29732178147017280 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Number of monic irreducible polynomials of degree n over GF(11). # Robert Israel, Jan 07 2015
LINKS
C. G. Bower, Transforms (2)
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
FORMULA
"CHK" (necklace, identity, unlabeled) transform of 11, 0, 0, 0...
a(n) = Sum_{d|n} mu(d)*11^(n/d)/n.
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 11*x^k))/k. - Ilya Gutkovskiy, May 19 2019
MAPLE
f:= (n, p) -> add(numtheory:-mobius(d)*p^(n/d), d=numtheory:-divisors(n))/n:
seq(f(n, 11), n=1..100); # Robert Israel, Jan 07 2015
MATHEMATICA
f[d_]:=MoebiusMu[d] 11^(n/d)/n; a[n_]:=Total[f/@Divisors[n]]; a[0]=1; Table[a[n], {n, 1, 30}] (* Vincenzo Librandi, Oct 14 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(d)*11^(n/d))/n; \\ Michel Marcus, Jan 07 2015
CROSSREFS
Column 11 of A074650.
Sequence in context: A246990 A156589 A165791 * A218000 A206528 A259193
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)