login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

"BHK" (reversible, identity, unlabeled) transform of 1,0,1,0...(odds).
2

%I #11 Mar 02 2022 14:42:57

%S 1,0,1,1,2,3,5,9,14,25,39,68,107,182,289,483,772,1275,2047,3355,5402,

%T 8811,14213,23112,37325,60580,97905,158717,256622,415715,672337,

%U 1088661,1760998,2850645,4611643,7463884,12075527,19541994

%N "BHK" (reversible, identity, unlabeled) transform of 1,0,1,0...(odds).

%H Andrew Howroyd, <a href="/A032089/b032089.txt">Table of n, a(n) for n = 1..1000</a>

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-2,0,-1,1,1).

%F G.f.: x*(1-x-2*x^2+2*x^3+x^6)/((1-x)*(1+x)*(1-x-x^2)*(1-x^2-x^4)).

%F a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) + a(n-8) for n > 8. - _Andrew Howroyd_, Aug 31 2018

%F 2*a(n) = 2*A000035(n) + A000045(n) - A053602(n). - _R. J. Mathar_, Mar 02 2022

%o (PARI) Vec((1-x-2*x^2+2*x^3+x^6)/((1-x)*(1+x)*(1-x-x^2)*(1-x^2-x^4)) + O(x^40)) \\ _Andrew Howroyd_, Aug 31 2018

%K nonn,easy

%O 1,5

%A _Christian G. Bower_