login
A029872
Low temperature series for spin-1/2 Ising specific heat on 2D square lattice.
4
16, 72, 288, 1200, 5376, 25480, 125504, 634608, 3269680, 17086168, 90282240, 481347152, 2585485504, 13974825960, 75941188736, 414593263952, 2272626444528, 12502223573304, 68996534259040, 381858968527680, 2118806030647328, 11783826597027256, 65674579024955904
OFFSET
0,1
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
LINKS
I. G. Enting, A, J. Guttmann and I. Jensen, Low-Temperature Series Expansions for the Spin-1 Ising Model, arXiv:hep-lat/9410005, 1994; J. Phys. A. 27 (1994) 6987-7006.
Steven R. Finch, Lenz-Ising Constants [broken link]
Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
FORMULA
G.f.: ((u^4 + 30*u^2 + 1) * K(x) / Pi - (u+1)^4 * E(x) / Pi - 2*u*(u+1)^2) / (u^2 * (u^2-1)^2) = 4 * (f(u) * (f'(u)/u + f''(u)) - (f'(u))^2) / f(u)^2, where f(u) is the g.f. of A002890, K(x) and E(x) are the complete elliptic integrals, x = 4*(1-u)*sqrt(u)/(1+u)^2. - Andrey Zabolotskiy, Feb 15 2022
a(n) ~ 2 * (1 + sqrt(2))^(2*n+4) / (Pi*n). - Vaclav Kotesovec, Apr 28 2024
MATHEMATICA
CoefficientList[Series[1/(Pi*x^2*(-1 + x^2)^2) * (-2*Pi*x*(1 + x)^2 - (1 + x)^4 * EllipticE[16*(-1 + x)^2*x/(1 + x)^4] + (1 + 30*x^2 + x^4) * EllipticK[16*(-1 + x)^2*x/(1 + x)^4]), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 28 2024 *)
CROSSREFS
Cf. A002890 (partition function).
Equals A029873/4 or A029874*8.
Sequence in context: A212513 A279905 A146748 * A056633 A248464 A232572
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(18) and beyond from Andrey Zabolotskiy, Feb 15 2022
STATUS
approved