login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029872
Low temperature series for spin-1/2 Ising specific heat on 2D square lattice.
4
16, 72, 288, 1200, 5376, 25480, 125504, 634608, 3269680, 17086168, 90282240, 481347152, 2585485504, 13974825960, 75941188736, 414593263952, 2272626444528, 12502223573304, 68996534259040, 381858968527680, 2118806030647328, 11783826597027256, 65674579024955904
OFFSET
0,1
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
LINKS
I. G. Enting, A, J. Guttmann and I. Jensen, Low-Temperature Series Expansions for the Spin-1 Ising Model, arXiv:hep-lat/9410005, 1994; J. Phys. A. 27 (1994) 6987-7006.
Steven R. Finch, Lenz-Ising Constants [broken link]
Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
FORMULA
G.f.: ((u^4 + 30*u^2 + 1) * K(x) / Pi - (u+1)^4 * E(x) / Pi - 2*u*(u+1)^2) / (u^2 * (u^2-1)^2) = 4 * (f(u) * (f'(u)/u + f''(u)) - (f'(u))^2) / f(u)^2, where f(u) is the g.f. of A002890, K(x) and E(x) are the complete elliptic integrals, x = 4*(1-u)*sqrt(u)/(1+u)^2. - Andrey Zabolotskiy, Feb 15 2022
a(n) ~ 2 * (1 + sqrt(2))^(2*n+4) / (Pi*n). - Vaclav Kotesovec, Apr 28 2024
MATHEMATICA
CoefficientList[Series[1/(Pi*x^2*(-1 + x^2)^2) * (-2*Pi*x*(1 + x)^2 - (1 + x)^4 * EllipticE[16*(-1 + x)^2*x/(1 + x)^4] + (1 + 30*x^2 + x^4) * EllipticK[16*(-1 + x)^2*x/(1 + x)^4]), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 28 2024 *)
CROSSREFS
Cf. A002890 (partition function).
Equals A029873/4 or A029874*8.
Sequence in context: A212513 A279905 A146748 * A056633 A248464 A232572
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(18) and beyond from Andrey Zabolotskiy, Feb 15 2022
STATUS
approved