login
A029832
A discrete version of the Mangoldt function: if n is prime then ceiling(log(n)) else 0.
4
0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0
OFFSET
1,3
COMMENTS
The real Mangoldt function Lambda(n) is equal to log(n) if n is prime else 0.
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 32.
P. Ribenboim, Algebraic Numbers, p. 44.
LINKS
MATHEMATICA
Table[If[PrimeQ[n], Ceiling[Log[n]], 0], {n, 120}] (* Harvey P. Dale, Aug 23 2019 *)
PROG
(PARI) A029832(n) = if(!isprime(n), 0, ceil(log(n))); \\ Antti Karttunen, Feb 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Antti Karttunen, Feb 06 2019
STATUS
approved