OFFSET
0,2
COMMENTS
Proof by induction.
a(n) = total area below paths consisting of steps east (1,0) and north (0,1) from (0,0) to (n+2,n+2) that stay weakly below y=x. For example, the two paths with n=0 are
. _|.....|
_|.....__|
The first has area 1 below it, the second area 0 and so a(0)=1. - David Callan, Dec 09 2004
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1657
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Sittipong Thamrongpairoj, Dowling Set Partitions, and Positional Marked Patterns, Ph. D. Dissertation, University of California-San Diego (2019).
FORMULA
a(n) = 4^(n+1)*Sum_{k=1..n+1} binomial(2k, k-1)/4^k = ((n+3)^2)*C(n+2)/2-2^(2*n+3), C = Catalan. Also a(n+1)=4*a(n)+binomial(2(n+2), n+1).
G.f.: (d/dx)c(x)/(1-4*x), where c(x) = g.f. for Catalan numbers; convolution of A001791 and powers of 4. G.f. also c(x)^2/(1-4*x)^(3/2); convolution of Catalan numbers A000108 C(n), n >= 1, with A002457; convolution of A008549(n), n >= 1, with A000984 (central binomial coefficients).
a(n) = Sum_{k=0..n+1} A039598(n+1,k)*k^2. - Philippe Deléham, Dec 16 2007
MATHEMATICA
a[n_] := (n+3)^2 CatalanNumber[n+2]/2 - 2^(2n+3);
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 25 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved