OFFSET
0,6
FORMULA
a(n) = n!*(1 - Sum_{k=0..floor(n/5)} (-1)^k/(k!*5^k)).
a(n)/n! is asymptotic to 1-e^(-1/5) = 1 - A092618.
E.g.f.: (1-exp(-x^5/5))/(1-x) - Geoffrey Critzer, Jun 01 2013
MATHEMATICA
nn = 20; a = Log[1/(1 - x)] - x^5/5; Range[0, nn]! CoefficientList[Series[1/(1 - x) - Exp[a], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 01 2013 *)
PROG
(PARI) my(x='x+O('x^66)); concat([0, 0, 0, 0, 0], Vec(serlaplace((1-exp(-x^5/5))/(1-x)))) \\ Joerg Arndt, Jun 01 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved