login
A029572
Number of permutations of an n-set containing a 5-cycle.
2
0, 0, 0, 0, 0, 24, 144, 1008, 8064, 72576, 653184, 7185024, 86220288, 1120863744, 15692092416, 237124952064, 3793999233024, 64497986961408, 1160963765305344, 22058311540801536, 441004037348818944, 9261084784325197824, 203743865255154352128, 4686108900868550098944
OFFSET
0,6
FORMULA
a(n) = n!*(1 - Sum_{k=0..floor(n/5)} (-1)^k/(k!*5^k)).
a(n)/n! is asymptotic to 1-e^(-1/5) = 1 - A092618.
E.g.f.: (1-exp(-x^5/5))/(1-x) - Geoffrey Critzer, Jun 01 2013
MATHEMATICA
nn = 20; a = Log[1/(1 - x)] - x^5/5; Range[0, nn]! CoefficientList[Series[1/(1 - x) - Exp[a], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 01 2013 *)
PROG
(PARI) my(x='x+O('x^66)); concat([0, 0, 0, 0, 0], Vec(serlaplace((1-exp(-x^5/5))/(1-x)))) \\ Joerg Arndt, Jun 01 2013
CROSSREFS
Column k=5 of A293211.
Sequence in context: A054118 A223373 A001342 * A129923 A064138 A158047
KEYWORD
nonn
AUTHOR
STATUS
approved