OFFSET
0,5
LINKS
Robert Israel, Table of n, a(n) for n = 0..449
FORMULA
a(n) = n! * (1 - sum(k=0..floor(n/4), (-1)^k/(k!*4^k) ) ).
a(n)/n! is asymptotic to 1-e^(-1/4) = 1 - A092616.
a(n) = n! (1 - Gamma(floor(n/4)+1,-1/4)*exp(1/4)/(floor(n/4))!). - Robert Israel, Dec 07 2016
E.g.f.: (1-exp(-x^4/4))/(1-x). - Alois P. Heinz, Oct 11 2017
MAPLE
L:= [seq( 1 - add((-1)^k/(k!*4^k), k=0..m), m=0..10)]:
seq(seq((4*m+j)!*L[m+1], j=0..3), m=0..10); # Robert Israel, Dec 07 2016
MATHEMATICA
a[n_] := n! (1 - Sum[(-1)^k/(k! 4^k), {k, 0, Floor[n/4]}]);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2019 *)
PROG
(PARI) a(n)=n! * (1 - sum(k=0, floor(n/4), (-1)^k/(k!*4^k) ) ); \\ Joerg Arndt, Aug 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved