login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029571 Number of permutations of an n-set containing a 4-cycle. 3
0, 0, 0, 0, 6, 30, 180, 1260, 8820, 79380, 793800, 8731800, 106029000, 1378377000, 19297278000, 289459170000, 4627941318000, 78675002406000, 1416150043308000, 26906850822852000, 538156815464268000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Robert Israel, Table of n, a(n) for n = 0..449

FORMULA

a(n) = n! * (1 - sum(k=0..floor(n/4), (-1)^k/(k!*4^k) ) ).

a(n)/n! is asymptotic to 1-e^(-1/4) = 1 - A092616.

a(n) = n! (1 - Gamma(floor(n/4)+1,-1/4)*exp(1/4)/(floor(n/4))!). - Robert Israel, Dec 07 2016

E.g.f.: (1-exp(-x^4/4))/(1-x). - Alois P. Heinz, Oct 11 2017

MAPLE

L:= [seq( 1 - add((-1)^k/(k!*4^k), k=0..m), m=0..10)]:

seq(seq((4*m+j)!*L[m+1], j=0..3), m=0..10); # Robert Israel, Dec 07 2016

MATHEMATICA

a[n_] := n! (1 - Sum[(-1)^k/(k! 4^k), {k, 0, Floor[n/4]}]);

Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Mar 19 2019 *)

PROG

(PARI) a(n)=n! * (1 - sum(k=0, floor(n/4), (-1)^k/(k!*4^k) ) ); \\ Joerg Arndt, Aug 08 2013

CROSSREFS

Column k=4 of A293211.

Sequence in context: A001473 A334288 A063888 * A259276 A109501 A239488

Adjacent sequences:  A029568 A029569 A029570 * A029572 A029573 A029574

KEYWORD

nonn

AUTHOR

Rob Pratt

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 22:30 EDT 2020. Contains 337346 sequences. (Running on oeis4.)