The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029571 Number of permutations of an n-set containing a 4-cycle. 3
 0, 0, 0, 0, 6, 30, 180, 1260, 8820, 79380, 793800, 8731800, 106029000, 1378377000, 19297278000, 289459170000, 4627941318000, 78675002406000, 1416150043308000, 26906850822852000, 538156815464268000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Robert Israel, Table of n, a(n) for n = 0..449 FORMULA a(n) = n! * (1 - sum(k=0..floor(n/4), (-1)^k/(k!*4^k) ) ). a(n)/n! is asymptotic to 1-e^(-1/4) = 1 - A092616. a(n) = n! (1 - Gamma(floor(n/4)+1,-1/4)*exp(1/4)/(floor(n/4))!). - Robert Israel, Dec 07 2016 E.g.f.: (1-exp(-x^4/4))/(1-x). - Alois P. Heinz, Oct 11 2017 MAPLE L:= [seq( 1 - add((-1)^k/(k!*4^k), k=0..m), m=0..10)]: seq(seq((4*m+j)!*L[m+1], j=0..3), m=0..10); # Robert Israel, Dec 07 2016 MATHEMATICA a[n_] := n! (1 - Sum[(-1)^k/(k! 4^k), {k, 0, Floor[n/4]}]); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2019 *) PROG (PARI) a(n)=n! * (1 - sum(k=0, floor(n/4), (-1)^k/(k!*4^k) ) ); \\ Joerg Arndt, Aug 08 2013 CROSSREFS Column k=4 of A293211. Sequence in context: A001473 A334288 A063888 * A357599 A368524 A259276 Adjacent sequences: A029568 A029569 A029570 * A029572 A029573 A029574 KEYWORD nonn AUTHOR Rob Pratt STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 18:28 EDT 2024. Contains 371667 sequences. (Running on oeis4.)