login
A029237
Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^11)).
1
1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 10, 9, 11, 11, 12, 13, 14, 14, 16, 15, 18, 17, 20, 19, 23, 21, 25, 23, 27, 26, 29, 29, 32, 32, 35, 35, 38, 38, 41, 41, 45, 44, 49, 48, 53
OFFSET
0,9
COMMENTS
Number of partitions of n into parts 2, 8, 9, and 11. - Vincenzo Librandi, Jun 03 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 1, 0, -1).
FORMULA
G.f.: 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^11)).
MATHEMATICA
CoefficientList[Series[1/((1 - x^2) (1 - x^8) (1 - x^9) (1 - x^11)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 03 2014 *)
LinearRecurrence[{0, 1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8}, 70] (* Harvey P. Dale, Aug 08 2020 *)
PROG
(PARI) Vec(1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^11)) + O(x^80)) \\ Jinyuan Wang, Mar 15 2020
CROSSREFS
Sequence in context: A060508 A029404 A029417 * A078641 A072628 A343901
KEYWORD
nonn,easy
STATUS
approved