The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028217 Expansion of 1/((1-6x)(1-9x)(1-10x)(1-12x)). 1
 1, 37, 865, 16345, 272881, 4203577, 61233985, 856507465, 11620866961, 154020283417, 2004281620705, 25705179230185, 325843083624241, 4091525808208057, 50980871394705025, 631212806724858505, 7774530598929024721, 95344134061235633497, 1165077358261678630945 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..925 Index entries for linear recurrences with constant coefficients, signature (37,-504,2988,-6480). FORMULA a(n) = 22*a(n-1) - 120*a(n-2) + 3^n*(3^(n+1) - 2^(n+1)), with a(0)=1, a(1)=37. - Vincenzo Librandi, Mar 14 2011 a(n) = 37*a(n-1) - 504*a(n-2) + 2988*a(n-3) - 6480*a(n-4), a(0)=1, a(1)=37, a(2)=865, a(3)=16345. - Vincenzo Librandi, Mar 14 2011 a(n) = (2*12^(n+3)-9*10^(n+3)+8*9^(n+3)-6^(n+3))/72. [Yahia Kahloune, Jun 12 2013] MAPLE A028217:=n->(2*12^(n+3)-9*10^(n+3)+8*9^(n+3)-6^(n+3))/72; seq(A028217(n), n=0..20); # Wesley Ivan Hurt, Jun 28 2014 MATHEMATICA CoefficientList[Series[1/((1 - 6 x) (1 - 9 x) (1 - 10 x) (1 - 12 x)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jun 28 2014 *) LinearRecurrence[{37, -504, 2988, -6480}, {1, 37, 865, 16345}, 20] (* Harvey P. Dale, May 03 2022 *) PROG (Magma) [(2*12^(n+3)-9*10^(n+3)+8*9^(n+3)-6^(n+3))/72: n in [0..20] ]; // Wesley Ivan Hurt, Jun 28 2014 (PARI) Vec(1/((1-6*x)*(1-9*x)*(1-10*x)*(1-12*x))+ O(x^20)) \\ Michel Marcus, Jun 28 2014 CROSSREFS Sequence in context: A144511 A028225 A028223 * A028215 A028198 A028164 Adjacent sequences: A028214 A028215 A028216 * A028218 A028219 A028220 KEYWORD nonn,easy AUTHOR N. J. A. Sloane. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 10 20:50 EDT 2024. Contains 375794 sequences. (Running on oeis4.)