login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A028037
Expansion of 1/((1-3x)(1-4x)(1-6x)(1-12x)).
2
1, 25, 415, 5845, 76111, 952525, 11679655, 141710965, 1710104671, 20579684125, 247310795095, 2969873300485, 35651407676431, 427894724193325, 5135204742169735, 61625269469056405, 739520126057523391
OFFSET
0,2
LINKS
Aung Phone Maw and Aung Kyaw, Recursive Harmonic Numbers and Binomial Coefficients, arXiv:1711.10716 [math.CO], 2017.
Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
FORMULA
a(n) = (12^(n+3) - 12*6^(n+3) + 27*4^(n+3) - 16*3^(n+3))/432 = -3^n + 4^(n+1) + 3^n*4^(n+1) - 6^(n+1). - Yahia Kahloune, May 31 2013
a(n) = 25*a(n-1) - 210*a(n-2) + 720*a(n-3) - 864*a(n-4), with a(0)=1, a(1)=25, a(2)=415, a(3)=5845. - Harvey P. Dale, May 23 2014
G.f.: 12*x/(5*binomial(12*x,5)). - Vladimir Kruchinin, Apr 17 2016
E.g.f.: (-1 + 4*exp(x) - 6*exp(3*x) + 4*exp(9*x))*exp(3*x). - Ilya Gutkovskiy, Apr 17 2016
MATHEMATICA
CoefficientList[Series[1/((1-3x)(1-4x)(1-6x)(1-12x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{25, -210, 720, -864}, {1, 25, 415, 5845}, 30] (* Harvey P. Dale, May 23 2014 *)
PROG
(PARI) Vec(1/((1-3*x)*(1-4*x)*(1-6*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
(Maxima)
taylor(12*x/binomial(12*x, 5)/5, x, 0, 10); /* Vladimir Kruchinin, Apr 17 2016 */
CROSSREFS
Sequence in context: A023955 A025980 A025978 * A102072 A022845 A023952
KEYWORD
nonn,easy
STATUS
approved