login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027978
a(n) = self-convolution of row n of array T given by A027960.
1
1, 11, 42, 145, 473, 1484, 4529, 13543, 39870, 115937, 333781, 953056, 2702497, 7618115, 21365778, 59657329, 165926609, 459905588, 1270819025, 3501855007, 9625627686, 26398369601, 72248624077, 197361589960, 538199264833
OFFSET
0,2
FORMULA
From Colin Barker, Feb 25 2015: (Start)
a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 5*a(n-4) - a(n-5).
G.f.: (1 +5*x -13*x^2 +8*x^3)/(1-3*x+x^2)^2. (End)
a(n) = 2*(n+1)*Lucas(2*n) + Fibonacci(2*n-4). - G. C. Greubel, Oct 01 2019
MAPLE
with(combinat); f:=fibonacci; seq(2*(n+1)*(f(2*n+1) + f(2*n-1)) + f(2*n-4), n=0..40); # G. C. Greubel, Oct 01 2019
MATHEMATICA
Table[2*(n+1)*LucasL[2*n] + Fibonacci[2*n-4], {n, 0, 40}] (* G. C. Greubel, Oct 01 2019 *)
PROG
(PARI) vector(41, n, f=fibonacci; 2*n*(f(2*n-1) + f(2*n-3)) + f(2*n-6)) \\ G. C. Greubel, Oct 01 2019
(Magma) [2*(n+1)*Lucas(2*n) + Fibonacci(2*n-4): n in [0..40]]; // G. C. Greubel, Oct 01 2019
(Sage) [2*(n+1)*lucas_number2(2*n, 1, -1) + fibonacci(2*n-4) for n in (0..40)] # G. C. Greubel, Oct 01 2019
(GAP) List([0..40], n-> 2*(n+1)*Lucas(1, -1, 2*n)[2] + Fibonacci(2*n-4) ); # G. C. Greubel, Oct 01 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved