|
|
A027981
|
|
Sum{(k+1)*T(n,k)}, 0<=k<=2n, T given by A027960.
|
|
1
|
|
|
1, 10, 40, 124, 340, 868, 2116, 4996, 11524, 26116, 58372, 129028, 282628, 614404, 1327108, 2850820, 6094852, 12976132, 27525124, 58195972, 122683396, 257949700, 541065220, 1132462084, 2365587460, 4932501508, 10267656196
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..26.
Index entries for linear recurrences with constant coefficients, signature (5,-8,4)
|
|
FORMULA
|
a(2n+1) = 6(4n+1) * 4^n + 4. - Ralf Stephan, Mar 22 2004
a(n) = 4+3*2^n*(2*n-1). G.f. ( -1-5*x+2*x^2 ) / ( (x-1)*(-1+2*x)^2 ). - R. J. Mathar, May 22 2013
a(0)=1, a(1)=10, a(2)=40, a(n)=5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Apr 17 2015
E.g.f.: 3*(4*x - 1)*exp(2*x) + 4*exp(x). - Ilya Gutkovskiy, Apr 17 2016
|
|
MATHEMATICA
|
LinearRecurrence[{5, -8, 4}, {1, 10, 40}, 30] (* Harvey P. Dale, Apr 17 2015 *)
|
|
CROSSREFS
|
Sequence in context: A002419 A199826 A227056 * A013977 A075060 A279219
Adjacent sequences: A027978 A027979 A027980 * A027982 A027983 A027984
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|