Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Nov 22 2020 01:24:05
%S 1,1,2,3,10,15,50,77,266,414,1452,2277,8074,12727,45474,71955,258570,
%T 410346,1481108,2355962,8533660,13599915,49402850,78855339,287134346,
%U 458917850,1674425300,2679183405,9792273690,15683407785
%N T(n,[ n/2 ]), T given by A027907.
%C The median coefficient in the expansion of (1 + x + x^2)^n. - _Vladimir Reshetnikov_, Nov 21 2020
%H Robert Israel, <a href="/A027913/b027913.txt">Table of n, a(n) for n = 0..2550</a>
%F a(n) = GegenbauerC(floor(n/2), -n, -1/2). - _Emanuele Munarini_, Oct 18 2016
%F G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - _Emanuele Munarini_, Oct 20 2016
%p seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # _Robert Israel_, Oct 20 2016
%t Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
%t 100}] (* _Emanuele Munarini_, Oct 20 2016 *)
%o (Maxima) makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* _Emanuele Munarini_, Oct 18 2016 */
%Y Cf. A027907, A027908.
%K nonn
%O 0,3
%A _Clark Kimberling_