login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027913
T(n,[ n/2 ]), T given by A027907.
3
1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
OFFSET
0,3
COMMENTS
The median coefficient in the expansion of (1 + x + x^2)^n. - Vladimir Reshetnikov, Nov 21 2020
LINKS
FORMULA
a(n) = GegenbauerC(floor(n/2), -n, -1/2). - Emanuele Munarini, Oct 18 2016
G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - Emanuele Munarini, Oct 20 2016
MAPLE
seq(simplify(GegenbauerC(floor(n/2), -n, -1/2)), n=0..100); # Robert Israel, Oct 20 2016
MATHEMATICA
Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
100}] (* Emanuele Munarini, Oct 20 2016 *)
PROG
(Maxima) makelist(ultraspherical(floor(n/2), -n, -1/2), n, 0, 12); /* Emanuele Munarini, Oct 18 2016 */
CROSSREFS
Sequence in context: A226881 A369781 A026336 * A081204 A293308 A357269
KEYWORD
nonn
STATUS
approved