login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027636
Expansion of (1+x^19)/((1-x^2)*(1-x^4)^2*(1-x^6)).
1
1, 0, 1, 0, 3, 0, 4, 0, 7, 0, 9, 0, 14, 0, 17, 0, 24, 0, 29, 1, 38, 1, 45, 3, 57, 4, 66, 7, 81, 9, 93, 14, 111, 17, 126, 24, 148, 29, 166, 38, 192, 45, 214, 57, 244, 66, 270, 81, 305, 93, 335, 111, 375, 126, 410, 148, 455
OFFSET
0,5
LINKS
B. Runge, On Siegel modular forms II, Nagoya Math. J., 138 (1995), 179-197.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,1,-1,-1,1,-2,2,0,0,1,-1).
FORMULA
G.f.: (1+x^19)/((1-x^2) * (1-x^4)^2 * (1-x^6)).
MATHEMATICA
CoefficientList[Series[(1+x^19)/((1-x^2)(1-x^4)^2(1-x^6)), {x, 0, 70}], x] (* Harvey P. Dale, Oct 13 2015 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^19)/((1-x^2)*(1-x^4)^2*(1-x^6) )); // G. C. Greubel, Aug 04 2022
(Sage)
def A027636_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^19)/((1-x^2)*(1-x^4)^2*(1-x^6) ).list()
A027636_list(70) # G. C. Greubel, Aug 04 2022
CROSSREFS
Cf. A027640.
Sequence in context: A246691 A066705 A277894 * A371737 A173425 A289445
KEYWORD
nonn
STATUS
approved