%I #11 May 07 2017 22:40:16
%S 1,2,2,4,4,6,7,11,12,16,18,25,28,36,41,53,59,73,82,102,115,138,155,
%T 185,208,244,273,321,359,415,461,533,593,678,751,857,948,1071,1182,
%U 1334,1472,1649,1813,2027,2225,2475,2712,3011,3295,3640,3974,4381,4779,5251
%N Sequence satisfies T^2(a)=a, where T is defined below.
%C T(a) is given by A027591. [From _Max Alekseyev_, Feb 20 2010]
%D S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%F Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 3 do not occur more than once.
%K nonn,eigen
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Max Alekseyev_, Feb 20 2010