login
A027590
Sequence satisfies T^2(a)=a, where T is defined below.
1
1, 2, 2, 4, 4, 6, 7, 11, 12, 16, 18, 25, 28, 36, 41, 53, 59, 73, 82, 102, 115, 138, 155, 185, 208, 244, 273, 321, 359, 415, 461, 533, 593, 678, 751, 857, 948, 1071, 1182, 1334, 1472, 1649, 1813, 2027, 2225, 2475, 2712, 3011, 3295, 3640, 3974, 4381, 4779, 5251
OFFSET
0,2
COMMENTS
T(a) is given by A027591. [From Max Alekseyev, Feb 20 2010]
REFERENCES
S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 3 do not occur more than once.
CROSSREFS
Sequence in context: A366129 A341697 A242984 * A007212 A027595 A261797
KEYWORD
nonn,eigen
AUTHOR
EXTENSIONS
More terms from Max Alekseyev, Feb 20 2010
STATUS
approved