login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027567 Number of distinct (modulo rotation and reflection) n X n panmagic = pandiagonal = diabolic = Nasik squares. 2

%I

%S 1,0,0,48,3600,0

%N Number of distinct (modulo rotation and reflection) n X n panmagic = pandiagonal = diabolic = Nasik squares.

%D Hunter, J. A. H. and Madachy, J. S. "Mystic Arrays." Ch. 3 in Mathematical Diversions. New York: Dover, pp. 24-25, 1975.

%H Harvey Heinz, <a href="http://www.magic-squares.net/pandiag5.htm">Pandiagonal 5 X 5</a>.

%H D. N. Lehmer, <a href="http://dx.doi.org/10.1090/S0002-9904-1933-05790-7">A census of squares of order 4, magic in rows, columns, and diagonals</a>, Bull. Amer. Math. Soc. 39 (1933), 981-982.

%H Wolfgang Müller, <a href="https://www.mat.univie.ac.at/~slc/wpapers/s39mueller.html">Group Actions on Magic Squares</a>, Séminaire Lotharingien de Combinatoire, B39b (1997), 14 pp.

%H Barkley Rosser and R. J. Walker, <a href="http://dx.doi.org/10.1090/S0002-9904-1938-06774-2">On the transformation group for diabolic magic squares of order four</a>, Bull. Amer. Math. Soc. 44 (1938), 416-420.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PanmagicSquare.html">Panmagic Square</a>

%Y Cf. A006052.

%K nonn,hard,more

%O 1,4

%A _Eric W. Weisstein_

%E Corrected by _Eric Weisstein_, Mar 14 2003 to include only distinct squares; Hunter and Madachy give the count of all such squares (there are 384).

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 16:04 EDT 2021. Contains 343135 sequences. (Running on oeis4.)